- 6.1C Properties of Exponents (Division)
- 6.2 Radicals and Rational Exponents

Expand. What do you think the rule is?

$$\frac{\mathbf{x}^9}{\mathbf{x}^3} = \frac{\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}}$$

$$= \mathbf{x}^{0}$$

Quotient Property

When dividing powers with the same bases, treat the division bar like a giant subtraction sign

$$\frac{{}^{*}\frac{X^{9}}{X^{3}}}{{}^{*}\frac{X^{4}}{X^{7}}} = X^{9-3} = X^{6}$$

$$\frac{{}^{*}\frac{X^{4}}{X^{7}}}{X^{7}} = X^{4-7} = X^{-3} = \frac{1}{X^{3}}$$

* Take the bigger exponent and subtract the smaller - where the big one was is where the base will stay!

Simplify.

1.
$$\frac{2x^2}{2x^1} = X^2 - X^2 = X^1$$

2.
$$\frac{2n^2}{2n^4} = \eta^{2-4}$$

= η^{-2}
= $\frac{1}{\eta^2}$

1.
$$\frac{2x^2}{2^2x^2} = X^{2-1}$$
 2. $\frac{2n^2}{2^2n^4} = N^{2-4}$ 3. $\frac{3a^2}{a^{-1}} = 30^{2-(-1)}$ $= 30^{2+1}$ $= 30^{3}$

4.
$$\frac{3k}{4k^2} = \frac{3}{4} \frac{K^{1-k}}{4}$$

$$= \frac{3}{4} \frac{K^{1-k}}{4}$$

$$= \frac{3}{4} \frac{K^{1-k}}{4}$$

$$5. \ \frac{x^4}{3x^2} = \frac{X^{4-2}}{3}$$

$$= \frac{X^2}{3}$$

4.
$$\frac{3k}{4k^2} = \frac{3}{4} | K^{1-2} |$$

$$= \frac{3}{4} | K$$

Simplify each.

1.
$$\frac{2x^3y^{-4}}{x^3y^2} = 2x^{3-3}y^{-4-3}$$
$$= 2x^0y^{-6}$$
$$= \frac{2}{y^6}$$

3.
$$\frac{2m^{-4}n^{2}}{24nm^{4}}$$

$$= \frac{m^{-4}-4n^{2-1}}{2}$$

$$= \frac{m^{-8}n^{4}}{2}$$

1.
$$\frac{2x^{3}y^{-4}}{x^{3}y^{2}} = 2x^{3-3}y^{-4-2}$$
2.
$$\frac{2y^{-2}}{3x^{0}y^{3}} = \frac{2}{3}y^{-2-3}$$

$$= \frac{2}{3}y^{-5}$$

$$=$$

$$4. \frac{4xy^{-3}}{x^{-3}y^{3}}$$

$$= 4x \cdot x^{3}$$

$$= 4 x \cdot x^{3}$$

$$= 4 x^{4}$$

$$= 4 x^{4}$$

$$= 4 x^{4}$$

Simplify.

$$\left(\frac{ab^{4}}{c^{2}d^{3}}\right)^{5} = \frac{0.5 b^{4.5}}{c^{2.5} d^{3.5}}$$

$$= \frac{0.5 b^{20}}{c^{10} d^{15}}$$

$$\left(\frac{\mathbf{a}^3 \mathbf{b}}{\mathbf{a}^2 \mathbf{b}^2}\right)^3 = \left(a^{3-2} b^{1-2}\right)^3$$
$$= \left(a b^{-1}\right)^3$$
$$= \left(\frac{a}{b}\right)^3 = \boxed{\frac{a^3}{b^3}}$$

$$\left(\frac{2}{3}\right)^{-2} \left(\frac{3}{6m}\right)^{-3} \\
= \left(\frac{2^{-2}}{3^{-2}}\right) \left(\frac{3^{-3} \text{ m}^{-3}}{\text{n}^{-3}}\right) \\
= \left(\frac{3^{2}}{2^{2}}\right) \left(\frac{3^{3} \text{ m}^{3}}{\text{n}^{3}}\right) \\
= \frac{3^{2} \text{ n}^{2}}{3^{2} \text{ m}^{3}} = \frac{n^{2}}{3^{2} \text{ m}^{3}}$$

$$\left(\frac{2x^2}{y^3}\right)^{-2} = \left(\frac{2^{-2} \times -4}{y^{-6}}\right)$$

$$= \left(\frac{y^6}{2^2 \times 4}\right)$$

$$= \frac{y^6}{4 \times 4}$$

Simplify each.

1.
$$-\frac{18x^{3}y^{-9}}{3x^{2}y^{2}} = -\frac{18}{3} \cdot \frac{\chi^{3}}{\chi^{2}} \cdot \frac{y^{-9}}{y^{2}}$$

$$= -0 \cdot \chi^{3-2} y^{-9-2}$$

3.
$$\frac{6a^{3}b^{-2}}{8ab^{-5}} = \frac{6a^{3}b^{-2}}{8ab^{-5}} = \frac{6a^{3}b^{-2}}{8ab^{-5}} = \frac{3}{4}a^{3-1}b^{-2+5}$$
$$= \frac{3}{4}a^{2}b^{3}$$
$$= \frac{30^{2}b^{2}}{4a^{2}b^{2}}$$

2.
$$\frac{5x^{2}y^{9}}{15x^{4}y^{9}} = \frac{5}{15} \cdot \frac{\chi^{2}}{\chi^{4}} \cdot \frac{y^{9}}{y^{9}}$$
$$= \frac{1}{3} \cdot \chi^{2-4} \cdot y^{9-9}$$
$$= \frac{1}{3} \chi^{-2} y^{9}$$
$$= \frac{1}{3} \chi^{2}$$

4.
$$\frac{12a^{-3}b^{3}}{16a^{5}b^{4}} = \frac{12}{10} \cdot \frac{0^{-3}}{0^{5}} \cdot \frac{b^{3}}{b^{4}}$$
$$= \frac{3}{4} \cdot 0^{-3-5}b^{3-4}$$
$$= \frac{3}{4} \cdot 0^{-8}b^{-1}$$
$$= \frac{3}{4} \cdot 0^{-8}b^{-1}$$

Simplifying Exponential Expressions

- * No negative or zero exponents
- * Same base does not appear more than once
- * No powers raised to powers (no parentheses)
- * No products raised to powers
- * No quotients raised to powers
- * Numerical coefficients do not have any factor in common

6.2 Radical and Rational Exponents

A number that is multiplied by itself to form a product is called a **square root** of that product. The operations of squaring and finding a square root are inverse operations.

The radical symbol $\sqrt{\ }$, is used to represent square roots. Positive real numbers have two square roots.

Example 1: Finding Square Roots of Perfect Squares

Find each square root.

C.
$$\sqrt{\frac{25}{81}} = \frac{\sqrt{25}}{\sqrt{81}} = \pm \frac{5}{9}$$

$$\mathbf{B.} - \sqrt{9}$$

$$= \pm 3$$

An *n*th root of *a* is written $\sqrt[n]{a}$, where the expression $\sqrt[n]{a}$ is called a **radical** and *n* is the **index** of the radical.

Real nth Roots of a

Let n be an integer greater than 1, and let a be a real number.

- If n is odd, then a has one real nth root: $\sqrt[n]{a} = a^{1/n}$
- If n is even and a > 0, then a has two real nth roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$
- If n is even and a = 0, then a has one real nth root: $\sqrt[n]{0} = 0$
- If n is even and a < 0, then a has no real nth roots.

Algebra
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

Numbers
$$27^{2/3} = (27^{1/3})^2 = (\sqrt[3]{27})^2$$

Rewrite each in rational exponent form.

1.
$$(\sqrt[5]{4})^3$$
 2. $(\sqrt[3]{-8})^2$ 3. $(\sqrt[4]{15})^7$

$$(-8)^{\frac{2}{3}}$$

3.
$$(\sqrt[4]{15})^7$$

Rewrite each exponent in radical form.

1.
$$(-3)^{2/5}$$
 2. $6^{3/2}$ $(\sqrt[5]{-3})^2$ $(\sqrt[2]{6})^3$

$$2.6^{3/2}$$

$$=\left(\sqrt{6}\right)^3$$

$$3. 12^{3/4}$$

In Exercises 1-6, find the indicated real nth root(s) of a.

1.
$$n = 2, a = 64$$

2.
$$n = 3, a = 27$$

3.
$$n = 4, a = 256$$

4.
$$n = 5, a = 243$$

5.
$$n = 8, a = 250$$

5.
$$n = 8, a = 256$$
 6. $n = 4, a = 10,000$

In Exercises 7-12, evaluate the expression.

7.
$$\sqrt[4]{625}$$
 = $\sqrt{25}$ /4

10.
$$\sqrt[5]{-243}$$

8.
$$\sqrt[3]{-512}$$

9.
$$\sqrt[3]{-216}$$

12.
$$(-81)^{1/2}$$

Evaluate each expression.

1.
$$32^{2/5}$$

2.
$$343^{2/3}$$

6.
$$(-625)^{34}$$

no solution

Homework

- 6.1 Pg. 296 #17 22, 47, 49
- 6.2 Pg. 303 #4, 6 8, 14, 16, 24, 26